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Abstract

Defining the limits of visibility of small defect clusters and dislocation loops, and optimal diffraction conditions for elec-
tron microscope imaging remains one of the central problems of electron microscopy of irradiated materials. Using
computer image simulations based on the propagation–interpolation algorithm for solving the Howie–Basinski equations,
we investigate the relation between the actual and the ‘observed’ size of small loops, the part played by many-beam dynam-
ical diffraction effects, and limitations of electron microscope imaging in identifying the structure of small defects. We also
discuss the link between real-space imaging and diffuse scattering by small dislocation loops.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Electron microscopy of irradiated materials is
arguably the only available method of visualizing
defect structures formed under irradiation. For
example, small dislocation loops and point-defect
clusters in crystals are usually investigated using dif-
fraction contrast images produced by transmission
electron microscopy. For relatively large defects a
combination of dynamical imaging and image con-
trast simulations has proven very successful for
determining defect structures [1]. At the same time
very small clusters are usually better seen under
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weak-beam diffraction conditions. Image simula-
tions are necessary for a full analysis of such images
[2,3].

In this paper we give a brief review of a recently
developed propagation–interpolation algorithm for
solving the Howie–Basinski equations [4] and its
applications to simulating electron microscope
images of small dislocation loops. We also outline
the principles of observation of electron diffuse scat-
tering by individual defects [6].

2. The propagation–interpolation algorithm

In many-beam dynamical diffraction theory the
wave function w(r) = w(x,y,z) of high-energy elec-
trons propagating through a thin foil is approxi-
mated by a sum of plane waves with slowly
varying amplitudes /g(r) as
.
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wðrÞ ¼
X

g

/gðrÞ exp½2piðkþ gþ sgÞ � r�: ð1Þ

Here k is the wave vector of electrons incident on
the foil and sg is the excitation error for the beam
with diffraction vector g. Vector sg is parallel to
the zone axis z and its length is defined by the con-
dition of energy conservation k2 = jk + g + sgj2.
The potential of interaction between the high-en-
ergy electrons and the crystal is evaluated using
the deformable ion approximation

V ðrÞ ¼
X

g

V g exp½2pig � ðr� RðrÞÞ�; ð2Þ

where R(r) is the field of atomic displacements
around a defect. In our simulations this field is as-
sumed to be continuous and is evaluated either by
using linear anisotropic elasticity [5] or by interpo-
lating between discrete atomic positions found using
molecular statics or molecular dynamics.

By inserting (1) and (2) into the Schrödinger
equation and neglecting the second order deriva-
tives, we arrive at the Howie–Basinski equations [4]

ðkþ gþ sgÞ � r/g ¼ �ipU 0/g � ip
X

g0
ð1� dgg0 Þ

� U g�g0 exp½2piðg0 � gÞRðrÞ
þ 2piðsg0 � sgÞ � r�/g0 ; ð3Þ

where Ug = �(2m/h2)Vg and h = 2p�h is the Planck
constant. To eliminate the phase factors in Eq. (3)
we apply a gauge transformation

/gðrÞ ¼ UgðrÞe�2pig�RðrÞe�2pisg�re
�ip

U0
ðkþgþsgÞz

z
: ð4Þ

The new amplitudes Ug(r) satisfy equations

ðkþ gþ sgÞ � rUg ¼ 2piðkþ gþ sgÞ � sðRÞg Ug

� pi
X

g0
ð1� dgg0 ÞU g�g0Ug0 ; ð5Þ

where sðRÞg ¼ sg þr½g � RðrÞ� is an effective excitation
error that varies spatially as a function of the distor-
tion field oRi/oxj, where i, j = 1,2,3. Since /g and Ug

in Eq. (4) differ only by a phase factor, the gauge
transformation does not affect the intensities of
the transmitted and diffracted beams and the simu-
lated images. The lattice distortion introduced by a
defect appears only in the local excitation error sðRÞg .
If the crystal undergoes a homogeneous (affine)
transformation then sðRÞg is a constant, and Eq. (5)
describes the diffraction from a homogeneously
deformed crystal. This suggests that Eq. (5) may
be solved numerically for an arbitrarily deformed
crystal by dividing it into small cells and taking
sðRÞg as a constant within each cell. Anomalous
absorption is introduced phenomenologically by
adding an imaginary part to the Fourier compo-
nents of the potential [7,8].

If the column approximation is applied to the
transformed equations (5) we neglect the compo-
nents of $Ug perpendicular to the zone axis z. In this
case we arrive at the modified Howie–Whelan
equations

oUg

oz
¼ 2pi

bg

ðkþ gþ sgÞ � sðRÞg Ug

� pi
X

g0
ð1� dgg0 Þ

U g�g0

bg

Ug0 ; ð6Þ

where bg = (k + g + sg)z.
In principle, solving Eq. (5) numerically requires

integrating these equations along the characteristics
defined by the directions of propagation of diffrac-
tion beams k + g + sg. The algorithm developed
here replaces propagating solutions along the char-
acteristics by a sequence of two-step events, where
the first step involves solving the modified Howie–
Whelan equations (6) for a thin slice within a set
of adjacent narrow columns, and the second step
corrects the solution for the effect of inclined prop-
agation of the beams by means of interpolating
between values found at the first step for the adja-
cent columns. It can be proven [10] that in the limit
of small slice thickness and small column width a
solution found using the propagation–interpolation
algorithm is equivalent to the solution found by
integrating the Howie–Basinski equations.

What are the advantages of the approach
described above over the existing methods of image
simulations [9,3]? On the one hand, the new algo-
rithm makes it possible to simulate images of
three-dimensional defect structures (see, e.g. [2])
while the earlier solutions of the Howie–Basinski
equations only addressed the case of infinite straight
dislocations [9]. In comparison with the multislice
algorithms [3] the method is more flexible and is
able to use as input the distortion field oRi/oxj

evaluated using either linear elasticity or atomistic
simulations. Also, the structure of Eq. (5) makes it
possible to select, at the start of a simulation, a set
of g-vectors that contribute to the formation
of the image, therefore avoiding using a large num-
ber of virtual reflections required for carrying out
a multislice simulation. Last but not least, the sim-
plicity of the propagation–interpolation algorithm



Fig. 1. Sketch illustrating the numerical implementation of the
propagation–interpolation algorithm. Integrating the Howie–
Basinski equations along a characteristic is replaced by a two-
step process involving integrating the modified Howie–Whelan
equations for two neighbouring columns and evaluating a
weighted average of the two solutions.

Fig. 2. Simulated weak-beam images of an edge-on dislocation
loop of diameter 10 nm with Burgers vector b ¼ 1=3½1�11� at the
centre of the foil of thickness 60 nm under various diffraction
conditions (g,ng) for g = 002. (a) n = 3.5, (b) n = 4.5, (c) n = 5.5,
(d) n = 4.0, (e) n = 5.0 and (f) n = 6.0.
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illustrated in Fig. 1 greatly assisted the numerical
implementation of the method and made it possible
to perform simulations of images for a large variety
of diffraction conditions [10,2].

3. Image simulations

To illustrate a range of applications of the
method we carried out a study of images of small
Frank loops in copper simulated under weak-beam
diffraction conditions. This choice was motivated by
the availability of experimental images taken under
well-controlled diffraction conditions of small point-
defect clusters in ion-irradiated copper [11]. The
parameters considered included the foil thickness
and defect depth, which are difficult to determine
experimentally, as well as the weak-beam imaging
condition defined by the deviation parameter jsgj
or, equivalently, by the value of parameter n enter-
ing the definition of the weak-beam condition
(g,ng). The simulations were performed for Frank
loops of various size and orientation. A more com-
prehensive description of the method and simula-
tions is given in Ref. [10]. Our simulations show
that the contrast of images depends on the position
of the loop in the foil, on the thickness of the foil
and on the weak-beam parameter n. At a foil thick-
ness corresponding to a thickness fringe minimum
the contrast of images is high, while at a thickness
fringe maximum the contrast is relatively weak,
making small loops effectively invisible [10].
To investigate the part played by many-beam dif-
fraction effects we simulated images of small loops
for varying diffraction conditions. Results of the
simulations are shown in Fig. 2. The images forming
the top row (images (a)–(c)) correspond to cases
where n is non-integer and where no higher-order
systematic reflections are excited. Simulated images
shown in the bottom line (d)–(f) correspond to cases
where reflections 4g, 5g and 6g, respectively, are at
the exact Bragg condition. The presence of the addi-
tional excited diffraction beams gives rise to the
fairly complex pattern of intensity distribution seen
in the images. Whilst it is still possible to identify the
dislocation loop in the image, we see that it is desir-
able to avoid exciting systematic reflections simulta-
neously in practical weak-beam imaging. In other
words, while the (g,ng) weak-beam images with
integer n are known to produce artifacts in the case
of line dislocations, our simulations show that arti-
facts also occur in the images of small loops.

One of the objectives of electron microscope
examination of an irradiated specimen is establish-
ing a reliable link between the visible size of a small
dislocation loop and its actual size. A human eye is
sensitive to changes in contrast, and so the absolute
contrast level may not be the best criterion for the
identification of the ‘edge’ of a feature visible in
an image (in our case, the image of a dislocation
loop). To determine the position of the edge of an
image we examine all the pixels along the direction
parallel to the loop habit plane for edge-on loops
and identify the first pixel p where the contrast
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relative to background exceeds 15%. Then in the
pixels along the direction containing p we check if
the change in contrast (Ip � Ip�1)/Ip�1 exceeds some
threshold value. The process is repeated until a pixel
p is found which does satisfy the criteria hence locat-
ing one of the edges of the image. A similar proce-
dure is repeated to locate the opposite edge of the
image. By subtracting the coordinates of the pixels
we determine the maximum image size of edge-on
loops. We found that these criteria give good agree-
ment with measurements made by eye for the same
simulated image.

Fig. 3 shows values of the image size measured in
this way for edge-on Frank loops of various size,
imaged under various diffraction conditions and
for various foil thicknesses. We see that the image
size is a reasonably good measure of the true loop
size, with a variation in a range about ±20%. At
small loop sizes the images of edge-on Frank loops
tend to be a little larger than the true loop size, pos-
sibly as a consequence of the way in which we define
the edge of a loop image and make the geometrical
correction. For loops of size P5 nm on average
there is a reasonably good correspondence between
the image size and the true loop size for most foil
thicknesses. Similar results were found for other
loop orientations [10].

What is the origin of fluctuations of the visible
size of small loops? To answer this question we fol-
low the argument by Lewis and Villagrana [12]. The
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Fig. 3. Image sizes measured by the method described in the text
for true loop sizes of 2, 3, 5 and 10 nm. The results presented here
are for edge-on Frank loops imaged under the weak-beam
conditions for g = 002. The energy of high-energy electrons is
100 keV. Calculations were carried out over a range of foil
thickness 54–60 nm in steps of 0.2 nm encompassing one thick-
ness fringe cycle, with each point representing a particular foil
thickness (some points are superimposed).
non-parallel propagation of diffracted beams inside
the foil results in that every point in an image is a
superposition of contributions from waves scattered
by various parts of the distortion field of the defect.
To give an estimate, we may say that the intensity at
the exit surface is a superposition of waves forming
the Takagi triangle and converging to a given point
at an image from a range of directions defined by
the Bragg angle hB � g/k. For 100 keV electrons
and 002 reflection in copper the Bragg angle is
hB � 2.0 · 10�2 rad. Depending on the depth of
the loop in the foil, each point in the image is
formed by waves converging from the linear region
of size w � hBL, where L is the distance between the
loop and the exit surface. For L = 60 nm we find
w � 1.2 nm. Comparing this estimate with the scale
of image size fluctuations shown in Fig. 3 we see
that it is the non-parallel propagation of diffracted
beams first noted by Lewis and Villagrana [12] that
is mainly responsible for the uncertainties associated
with the identification of the size of small defect
clusters. Recently on the basis of multislice image
simulations Schäublin [13] came to a similar conclu-
sion that if the size of a defect cluster is smaller than
2 nm, the electron microscope image no longer
exhibits the readily identifiable features required,
for example, for the determination of the morphol-
ogy of the defect.
4. Diffuse scattering by small dislocation loops

Diffuse scattering by individual small dislocation
loops has recently been extensively investigated
using a new experimental technique [6,14] where a
nearly parallel beam of electrons is used to illumi-
nate a relatively small area of the foil containing a
loop. Whereas in principle the cross-section of dif-
fuse scattering can be evaluated by evaluating the
Fourier transform of the amplitudes of diffracted
beams found by solving the Howie–Basinski equa-
tions (5), a faster method uses either the kinematical
approach [15] or the dynamical diffraction approach
where electrons scattered by the field of elastic dis-
tortions associated with the loop also undergo
dynamical diffraction in the foil before and after
the actual event of diffuse scattering. The cross-sec-
tion of dynamical diffuse scattering is given by [16]

drðk0! k0Þ
do

¼
Z

drw�k0 ðrÞ
X

n

V ðr� rn�unÞ�V ðr� rnÞ½ �wk0
ðrÞ

�����
�����
2

;

ð7Þ
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where wk(r) is a Bloch wave function (1) corre-
sponding to the incident electrons with wave vector
k. In the kinematical limit wk(r) = exp(ik Æ r), and
the distribution of intensity given by (7) exhibits fea-
tures similar to those observed experimentally [6].

We have already noted the significant part played
by dynamical diffraction effects in diffraction imag-
ing of dislocation loops. Qualitatively the origin of
the strong interference effects seen in Fig. 2 (bottom
line) is associated with the fact that the loop is illu-
minated by a strongly spatially modulated Bloch
wave, as opposed to illumination by a weakly dis-
torted plane wave in the case of weak-beam imaging
for non-integer values of parameter n. Similarly, we
should expect that the distribution of intensity of
diffuse scattering is going to be strongly affected
by dynamical diffraction effects if the orientation
of wave vectors is close to directions for which
one or more reciprocal lattice vectors g satisfy the
condition k2 � (k + g)2 for either the incident
(k = k0) or the scattered (k = k 0) electrons.

A comparison between diffuse scattering patterns
simulated using the kinematical and dynamical
approaches is made in Fig. 4. The general similari-
ties of these patterns suggest that the kinematical
approximation is adequate for qualitative studies
of diffuse scattering intensity distributions. On the
other hand, dynamical effects can still be seen in
the diffuse scattering patterns, so a dynamical
approach would be necessary for quantitative stud-
ies. Comparing the dynamical effects presented in
diffraction contrast (Fig. 2) and diffuse scattering
(Fig. 4), we see that the effects of dynamical diffrac-
tion seem to be less pronounced in diffuse scattering
Kinematical Dynamicala b

Fig. 4. Iso-intensity plots of elastic diffuse scattering patterns
(ignoring Laue scattering) from an vacancy Frank loop of
Burgers vector ¼ 1=3½1�11� in gold around a (222) Bragg spot
under diffraction condition (g, 4g) where g = 111. (a) Calculated
using the kinematical approach, (b) calculated using the dynam-
ical diffraction approach. Intensities are plotted on a common
logarithmic scale.
patterns than in diffraction images. The nature of
this difference requires further investigation.

5. Summary

• We implemented a propagation–interpolation
algorithm for solving the Howie–Basinski equa-
tions, and investigated weak-beam images of
three-dimensional defect clusters as a function
of the foil thickness, the depth of defect in the foil
and diffraction conditions.

• Simulations show that the non-parallel propaga-
tion of diffracted beams in the foil introduces sig-
nificant uncertainty in the interpretation of
images of small defects.

• Measurements of elastic diffuse scattering offer
an alternative, reciprocal space method of char-
acterizing small loops. Simulations of diffuse
scattering patterns exhibit notable dynamical
diffraction effects affecting the distribution of
intensity in the vicinity of the Bragg diffraction
condition.
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[13] R. Schäublin, Selection of experimental methods for JAN-
NUS, presentation on task TW6-TTMS007-D12 given at the
2006 EFDA Monitoring Meeting, CRPP Lausanne, Decem-
ber 2006 (unpublished).

[14] M.A. Kirk, M.L. Jenkins, Z. Zhou, R.D. Twesten, A.P.
Sutton, S.L. Dudarev, R.S. Davidson, Philos. Mag. 86
(2006) 4797.
[15] Z. Zhou, A.P. Sutton, S.L. Dudarev, M.L. Jenkins, M.A.
Kirk, Proc. R. Soc. London A 461 (2005) 3935.

[16] L.-M. Peng, S.L. Dudarev, M.J. Whelan, High-Energy
Electron Diffraction and Microscopy, Oxford University
Press, Oxford, 2004, p. 234.


	Diffraction imaging and diffuse scattering by small dislocation loops
	Introduction
	The propagation-interpolation algorithm
	Image simulations
	Diffuse scattering by small dislocation loops
	Summary
	Acknowledgements
	References


